This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

Aluminum(III), gallium(III), and indium(III) 4-hydroxyacridinato complexes

Iolinda Aiello^a; Daniela Aiello^a; Mauro Ghedini^a

^a Centre of Excellence CEMIF.CAL; LASCAMM, CR-INSTM Reference Centre of Italian Interuniversity Consortium on Materials Science and Technology, Department of Chemistry, University of Calabria, Italy

To cite this Article Aiello, Iolinda , Aiello, Daniela and Ghedini, Mauro(2009) 'Aluminum(III), gallium(III), and indium(III) 4-hydroxyacridinato complexes', Journal of Coordination Chemistry, 62: 20, 3351 — 3365 To link to this Article: DOI: 10.1080/00958970903071625 URL: http://dx.doi.org/10.1080/00958970903071625

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Aluminum(III), gallium(III), and indium(III) 4-hydroxyacridinato complexes

IOLINDA AIELLO*, DANIELA AIELLO and MAURO GHEDINI

Centre of Excellence CEMIF.CAL; LASCAMM, CR-INSTM Reference Centre of Italian Interuniversity Consortium on Materials Science and Technology, Department of Chemistry, University of Calabria, I-87036 Arcavacata di Rende (CS), Italy

(Received 4 December 2008; in final form 10 April 2009)

4-Hydroxyacridine (HAcr) is an O,N-chelating ligand whose coordination chemistry toward group 13 M(III) ions has received little attention. The molecular structure of HAcr consists of a 2,3-disubstituted-8-hydroxyquinoline; thus, in order to compare 8-hydroxyquinoline (HQ), 2-methyl-8-hydroxyquinoline (HMeQ'), and 2,3-disubstituted-8-hydroxyquinoline (HAcr) for steric and/or electronic influence, HAcr chelating ability toward the Al(III), Ga(III), and In(III) triad has been investigated. Irrespective of the nature of M(III), only complexes containing two equivalents of deprotonated HAcr are obtained. This article describes the synthesis and characterization of different series of bis-chelated pentacoordinated (Acr)₂MY (M = Al, Ga, In; Y = Cl, Br, I, NCS, N₃) or (Acr)₂MZ (M = Ga or In; HZ = C₆H₅OH, C₆H₁₃OC₆H₄OH, C₆H₅COOH, or C₆H₁₃OC₆H₄COOH) six-coordinate neutral (Acr)₂In(acac) (H(acac) = acetylacetone), or ionic [(Acr)₂In(N,N)][CF₃SO₃] (N,N = 2,2'-bipyridine or 1,10-phenanthroline) complexes. These results significantly contribute to elucidating the complexation capability of HAcr.

Keywords: 4-Hydroxyacridine complexes; Group 13 elements; N,O ligands

1. Introduction

M(III) ions (M = Al, Ga, or In), reacting with 8-hydroxyquinoline (HQ; in figure 1), form hexacoordinate MQ₃ [1] complexes, which have been extensively investigated for their luminescent properties, leading to patents for a new generation of multilayer, not fully inorganic, electroluminescent light emitting devices [2]. These devices, currently referred to as Organic Light Emitting Devices (OLEDs), contain a molecular material (i.e. AlQ₃) which acts both as electron transport and emitting layer [3].

The admission of AlQ_3 into the field of advanced materials further stimulated investigations on AlQ_3 -like compounds. To this end, the 2-methyl-8-hydroxyquinoline (HMeQ'; in figure 1) was considered and either tris-chelated hexacoordinate $M(MeQ')_3$

^{*}Corresponding author. Email: iolinda.aiello@unical.it

Figure 1. Molecular structure of HQ, HMeQ', and HAcr.

Figure 2. Molecular structure of (MeQ')₂AlOPh, (MeQ')₂GaOCOCH₃, and [(MeQ')₂Ga(N,N)]X complexes.

(M = A1 [4], Ga [5] or In [5a, 5b]) or bis-chelated pentacoordinate $(MeQ')_2MOL$ (M = A1 [6] or Ga [5c, 7]) compounds were synthesized and investigated (representative examples of which are M = Al, L = Ph, $(MeQ')_2AIOPh [6h]$ and M = Ga, $L = COCH_3$, $(MeQ')_2GaOCOCH_3 [7a]$, respectively, in figure 2).

For HQ or HMeQ' complexes, while the MQ₃ series is obtained irrespective of the molar ratio between M(III) and HQ, the products which HMeQ' form depend on the nature of M(III). When treating Al(III) with HMeQ', in any molar ratio and in presence of phenol or substituted phenols, $(MeQ')_2AIOL$ [6] complexes usually form (except for the synthesis of Al(MeQ')₃ which requires very specific reaction conditions [4]). In contrast, Ga(III) with HMeQ' in a 1:3 molar ratio quantitatively forms Ga(MeQ')₃, whereas in 1:2 molar ratio, although in presence of an excess of the pertinent carboxylic acid or the phenol, both hexacoordinate Ga(MeQ')₃ and pentacoordinate (MeQ')₂GaOL [5c, 7] complexes form. Finally, In(III) and HMeQ' exclusively forms In(MeQ')₃ [5a, 5b].

The coordination chemistry of HQ or HMeQ' with the Al(III)–In(III) triad is well documented and formation of hexacoordinate MQ₃ or M(MeQ')₃ depends on the right balance between O,N steric hindrance and the M(III) ionic radius (Al(III), 51 pm; Ga(III), 62 pm; In(III), 81 pm) [8]. Indeed, in mild reaction conditions, the smaller Al(III) with the comparatively bulkier HMeQ' bearing the Me group in position 2 of the quinoline skeleton gives only the bis-chelated complex of general formula $(MeQ')_2AIOL$. In contrast, with the intermediate sized Ga(III), both the tris-chelated Ga(MeQ')₃ and the bis-chelated (MeQ')₂GaOL coordination compounds are obtained, while with the larger In(III) only In(MeQ')₃ is formed. Recently, [(MeQ')₂Ga(N,N)]X

compounds have also been synthesized and structurally characterized (N,N=2,2'-bipyridine or 1,10-phenanthroline; $X^- = NO_3^-$ or PF_6^- [9] in figure 2).

4-Hydroxyacridine (HAcr, in figure 1) is an O,N-chelating ligand with steric hindrance similar to that of a 2,3-disubstituted-8-hydroxyquinoline. Remarkably, literature data concerning HAcr coordination chemistry with group 13 M(III) ions are nonexistent. Thus, in order to compare how O,N steric hindrance determines both the stoichiometry and the nature of the coordination polyhedron of the M(III) complexes along the homologous series of HQ, HMeQ', and HAcr, HAcr chelation toward the Al(III)–In(III) triad was investigated.

This article describes the synthesis and characterization of bis-chelated pentacoordinate $(Acr)_2MY$ (M = Al, Ga, In; Y = Cl, Br, I, NCS, N₃) or $(Acr)_2MZ$ (M = Ga or In; HZ = C₆H₅OH, C₆H₁₃OC₆H₄OH, C₆H₅COOH, or C₆H₁₃OC₆H₄COOH), hexacoordinate neutral $(Acr)_2In(acac)$ (H(acac) = acetylacetone), or ionic [(Acr)_2In(N,N)] [CF₃SO₃] (N,N = 2,2'-bipyridine or 1,10-phenanthroline) complexes.

2. Experimental

2.1. General considerations

Commercially available chemicals were used without purification. ¹H NMR spectra were recorded on a Bruker WM-300 at room temperature with Me₄Si as internal standard. IR spectra as KBr pellets were recorded on a Perkin-Elmer 2000 FT-IR. Elemental analyses were performed with a CHNS/O Perkin-Elmer 2400 analyzer. The melting points were determined with a microscope (Zeiss Axioscop) equipped with a Linkam CO 600 heating stage. Absorption spectra were recorded with a Perkin-Elmer Lambda 900 spectrophotometer.

2.2. Preparation of (Acr)₂MX (1, 2, and 3a)

Complexes 1–3 were prepared by a similar procedure using AlCl₃, GaNO₃ \cdot xH₂O, and InCl₃, respectively. The detailed procedure for preparation of 1 is given in Section 2.2.1.

2.2.1. (Acr)₂AlOH (1). A solution of AlCl₃ (50 mg, 0.375 mmol) in water : ethanol (5:5 mL) was added to a stirred ethanolic solution (15 mL) of HAcr (146 mg, 0.75 mmol) containing sodium hydroxide (30 mg, 0.75 mmol). The resulting mixture was continuously stirred for 5 h at reflux and for 16 h at room temperature. The obtained suspension was collected by filtration and the resultant solution was reduced. Diethyl ether was then added to give a bright orange precipitate of 1 that was collected by filtration. Yield: 130 mg (80%): m.p. = 205°C. ¹H NMR (CD₃OD): δ 9.89 (s, 2H, H^{4,4}), 8.58 (d, 2H, J = 8.95 Hz, H^{8,8}), 8.48 (d, 2H, J = 8.51 Hz, H^{5,5}), 8.28 (t, 2H, J = 7.77 Hz, H^{7,7}), 7.95 (t, 2H, J = 6.38 Hz, H^{6,6}), 7.90 (d, 2H, J = 7.78 Hz, H^{3,3}), 7.78 (t, 2H, J = 7.99 Hz, H^{2,2}), 7.59 (d, 2H, J = 7.48 Hz, H^{1,1}) ppm. IR (KBr): ν 2826 (br s, OH), 1631 (m), 1516 (m), 1468 (m), 1143 (m), 1075 (m), and 729 (s) cm⁻¹. UV-Vis (CH₃OH): λ_{max} = 440, 360, 343, and 270 nm. Anal. Calcd for C₂₆H₁₇N₂O₃Al (%): C, 72.22; H, 3.96; N, 6.48. Found (%): C, 72.0; H, 3.92; N, 6.43.

2.2.2. (Acr)₂GaNO₃ (2). In this case, Ga(NO₃)₃·xH₂O (50 mg, 0.195 mmol) and HAcr (76 mg, 0.391 mmol) were used. The resulting precipitate was filtered and repeatedly washed with water and ethanol. A bright orange solid was obtained. Yield: 86 mg (85%): m.p. >300°C. IR (KBr): ν 3055 (m), 1625 (m), 1523 (m), 1340–1281 (s, NO), 1142 (m), 1085 (m), and 760 (s) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{max} = 451$, 363, 345, and 276 nm. Anal. Calcd for C₂₆H₁₆N₃O₅Ga (%): C, 60.04; H, 3.10; N, 8.08. Found (%): C, 59.68; H, 2.93; N, 8.13. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.2.3. (Acr)₂InCl (3a). For 3a, InCl₃ (50 mg, 0.226 mmol) and HAcr (88 mg, 0.452 mmol) were used. The resulting precipitate was filtered, repeatedly washed with water and ethanol giving a red solid. Yield: 109 mg (90%): m.p. >300°C. IR (KBr): ν 3052 (m), 1624 (w), 1519 (m), 1462 (m), 1363 (w), 1146 (w), 1080 (w), 766 (m), and 734 (m) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{max} = 466$, 365, 348, and 280 nm. Anal. Calcd for C₂₆H₁₆N₂O₂InCl (%): C, 57.97; H, 2.99; N, 5.20. Found (%): C, 58.20; H, 3.10; N, 5.20. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.3. Preparation of (Acr)₂AlY (1a-1e)

2.3.1. (Acr)₂AlCl (1a). A solution of LiCl (49 mg, 1.16 mmol) in water (6 mL) was added in a molar ratio of 10:1 to a stirred water solution (5 mL) of 1 (50 mg, 0.116 mmol) at room temperature. The solution was stirred for 5 days and the resulting brown precipitate was collected by filtration and purified by washing with water, ethanol, and diethyl ether. Yield: 28 mg (55%): m.p. >300°C. IR (KBr): ν 3056 (m), 1612 (m), 1519 (m), 1464 (m), 1337 (m), 1147 (m), 1084 (m), and 764 (s) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{max} = 387$, 357, 340, and 257 nm. Anal. Calcd for C₂₆H₁₆N₂O₂AlCl (%): C, 69.26; H, 3.58; N, 6.21. Found (%): C, 69.00; H, 3.20; N, 6.11. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.3.2. (Acr)₂AlBr (1b). Complex 1b was synthesized following the procedure described for 1a using NaBr. A brown red solid was obtained. Yield: 32 mg (57%): m.p. > 300° C. IR (KBr): $\nu 3050$ (m), 1625 (m), 1520 (m), 1467 (m), 1334 (m), 1144 (m), 1080 (m), and 764 (s) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{max} = 389$, 360, 348, and 259 nm. Anal. Calcd for C₂₆H₁₆N₂O₂AlBr (%): C, 63.05; H, 3.26; N, 5.66. Found (%): C, 62.98; H, 3.21; N, 5.40. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.3.3. (Acr)₂AlI (1c). Complex 1c was synthesized following the procedure described for 1a using KI. A brown solid was obtained. Yield: 37 mg (60%): m.p. >300°C. IR (KBr): ν 3051 (m), 1630 (m), 1585 (m), 1473 (m), 1419 (m), 1147 (m), 1071 (m), 870 (s), and 728 (s) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{max} = 390$, 360, 340, and 260 nm. Anal. Calcd for C₂₆H₁₆N₂O₂AlI (%): C, 57.58; H, 2.97; N, 5.17. Found (%): C, 57.40; H, 2.80; N, 5.07. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.3.4. (Acr)₂AINCS (1d). Complex 1d was synthesized following the procedure for 1a using LiNCS. An orange-red solid was obtained. Yield: 30 mg (56%): m.p. > 300°C.

IR (KBr): ν 3053 (m), 2068 (CN, m), 1625 (m), 1513 (m), 1462 (m), 1378 (m), 1147 (m), 1080 (m), and 757 (m) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{max} = 384$, 364, 342, and 265 nm. Anal. Calcd for C₂₇H₁₆N₃O₂AlS (%): C, 68.49; H, 3.41; N, 8.87. Found (%): C, 68.30; H, 3.18; N, 8.84. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.3.5. (Acr)₂AlN₃ (1e). Complex 1e was synthesized following the procedure described for 1a using NaN₃. A brown-orange solid was obtained. Yield: 28 mg (53%): m.p. >300°C. IR (KBr): ν 3058 (m), 2131 (N₃, m), 2053 (N₃, m), 1615 (m), 1520 (m), 1466 (m), 1334 (m), 1144 (m), 1082 (m), and 765 (s) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{max} = 382, 357, 340$, and 257 nm. Anal. Calcd for C₂₆H₁₆N₅O₂Al (%): C, 68.27; H, 3.53; N, 15.31. Found (%): C, 68.00; H, 3.42; N, 15.20. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.4. Preparation of (Acr)₂GaY (2a-2e)

2.4.1. (Acr)₂GaCl (2a). Complex 2a was obtained as for 1a using acetone: water (8:5 mL). A bright orange-yellow solid was obtained. Yield: 38 mg(80%): m.p. > 300° C. IR (KBr): $\nu 3054$ (m), 1624 (m), 1522 (m), 1398 (m), 1143 (m), 1083 (m), and 757 (s) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{max} = 450$, 362, 296, and 275 nm. Anal. Calcd for C₂₆H₁₆N₂O₂GaCl (%): C, 63.27; H, 3.27; N, 5.68. Found (%): C, 62.92; H, 3.50; N, 5.72. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.4.2. (Acr)₂GaBr (2b). Complex 2b was synthesized following the procedure described for 1a using NaBr. An orange solid was obtained. Yield: 45 mg (87%): m.p. >300°C. IR (KBr): ν 3049 (m), 1609 (m), 1530 (m), 1462 (m), 1237 (m), 1147 (m), 1082 (m), and 734 (s) cm⁻¹. UV-Vis (CH₂Cl₂): λ_{max} = 450, 361, 343, and 273 nm. Anal. Calcd. for C₂₆H₁₆N₂O₂GaBr (%): C, 58.04; H, 3.00; N, 5.21. Found (%): C, 58.40; H, 2.83; N, 4.93. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.4.3. (Acr)₂GaI (2c). Complex 2c was synthesized following the procedure described for 1a using KI. An orange-red solid was obtained. Yield: 42 mg (74%): m.p. >300°C. IR (KBr): ν 3050 (m), 1610 (m), 1528 (m), 1363 (m), 1146 (m), 1082 (m), and 745 (s) cm⁻¹. UV-Vis (CH₂Cl₂): λ_{max} = 456, 361, 346, and 276 nm. Anal. Calcd for C₂₆H₁₆N₂O₂GaI (%): C, 53.38; H, 2.76; N, 4.79. Found (%): C, 53.41; H, 2.98; N, 4.55. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.4.4. (Acr)₂GaNCS (2d). Complex 2d was synthesized following the procedure described for 1a using LiNCS. An orange-red solid was obtained. Yield: 35 mg (70%): m.p. >300°C. IR (KBr): ν 3054 (m), 2070 (CN, m), 1635 (m), 1518 (m), 1465 (m), 1388 (m), 1148 (m), 1084 (m), and 767 (s) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{max} = 443$, 360, 345, and 272 nm. Anal. Calcd for C₂₇H₁₆N₃O₂GaS (%): C, 62.82; H, 3.12; N, 8.14. Found (%): C, 62.79; H, 2.99; N, 7.93. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.4.5. (Acr)₂GaN₃ (2e). Complex 2e was synthesized following the procedure described for 1a using NaN₃. An orange-red solid was obtained. Yield: 40 mg (83%): m.p. >300°C. IR (KBr): ν 3054 (m), 2079 (N₃, m), 1624 (m), 1522 (m), 1398 (m), 1143 (m), 1083 (m), and 757 (s) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{max} = 450$, 362, 296, and 275 nm. Anal. Calcd for C₂₆H₁₆N₅O₂Ga (%): C, 62.44; H, 3.22; N, 14.0. Found (%): C, 62.11; H, 2.96; N, 13.88. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.5. Preparation of (Acr)₂InY (3b-3e)

2.5.1. (Acr)₂InBr (3b). Complex 3b was obtained in the same way as 1a using NaBr and water : acetone (5 : 8 mL). An orange-red solid was obtained. Yield: 35 mg (64%): m.p. >300°C. IR (KBr): ν 3052 (m), 1624 (m), 1519 (m), 1462 (m), 1283 (m), 1145 (m), 1081 (m), 740 (s), and 600 (s) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{max} = 465$, 365, 347, and 281 nm. Anal. Calcd for C₂₆H₁₆N₂O₂InBr (%): C, 53.55; H, 2.77; N, 4.80. Found (%): C, 53.88; H, 2.77; N, 4.22. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.5.2. (Acr)₂InI (3c). Complex 3c was synthesized following the procedure described for 1a using KI. An orange solid was obtained. Yield: 36 mg (61%): m.p. > 300° C. IR (KBr): ν 3056 (m), 1623 (m), 1539 (m), 1398 (m), 1269 (m), 1146 (m), 1079 (m), 874 (s), and 733 (s) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{\text{max}} = 471$, 365, 348, and 281 nm. Anal. Calcd for C₂₆H₁₆N₂O₂InI (%): C, 49.56; H, 2.56; N, 4.45. Found (%): C, 49.86; H, 2.77; N, 4.71. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.5.3. (Acr)₂InNCS (3d). Complex 3d was synthesized following the procedure described for 1a using LiNCS. An orange-red solid was obtained. Yield: 34 mg (66%): m.p. >300°C. IR (KBr): ν 3060 (m), 2060 (m, CN), 1624 (m), 1519 (m), 1462 (m), 1394 (m), 1145 (m), 1081 (m), and 764 (s) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{max} = 460$, 364, 347, and 278 nm. Anal. Calcd for C₂₇H₁₆N₃O₂InS (%): C, 57.77; H, 2.87; N, 7.49. Found (%): C, 57.70; H, 2.79; N, 7.30. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.5.4. (Acr)₂InN₃ (3e). Complex 3e was synthesized following the procedure described for 1a using NaN₃. An orange-red solid was obtained. Yield: 32 mg (64%): m.p. >300°C. IR (KBr): ν 3053 (m), 2066 (m, N₃), 1625 (m), 1517 (m), 1459 (m), 1337 (m), 1147 (m), 1080 (m), and 727 (s) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{\text{max}} = 460$, 365, 347, and 282 nm. Anal. Calcd for C₂₆H₁₆N₅O₂In (%): C, 57.27; H, 2.96; N, 12.84. Found (%): C, 57.10; H, 2.87; N, 12.80. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.6. Preparation of (Acr)₂GaZ (2f-2i)

In a typical preparation, sodium hydroxide (15 mg, 0.384 mmol) was added to a solution of the suitable phenol (0.384 mmol) or carboxylic acid (0.384 mmol).

The resulting mixture was slowly added to a suspension of 2 (50 mg, 0.096 mmol) in ethanol (5 mL). The resulting mixture was refluxed for 24 h. After cooling to room temperature, the solid was filtered and washed with water, ethanol, and diethyl ether.

2.6.1. (Acr)₂GaOC₆H₅ (2f). Orange-red solid. Yield: 37 mg (70%): m.p. >300°C. IR (KBr): ν 3050 (m), 1624 (m), 1521 (m), 1464 (m), 1278 (m), 1148 (m), 1080 (m), 740 (s), and 619 (s) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{max} = 443$, 361, 344, and 271 nm. Anal. Calcd for C₃₂H₂₁N₂O₃Ga (%): C, 69.72; H, 3.84; N, 5.08. Found (%): C, 69.60; H, 3.70; N, 5.0. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.6.2. (Acr)₂GaOC₆H₄OC₆H₁₃ (2g). Orange solid. Yield: 37 mg (59%): m.p. >300°C. IR (KBr): ν 3056 (m), 2970 (m), 2861 (w), 1536 (m), 1147 (m), 1084 (m), and 732 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 9.15 (d, 2H, J=8.65 Hz, H^{8,8}), 9.00 (s, 2H, H^{4,4}), 8.15 (d, 2H, J=8.51 Hz, H^{5,5}), 8.00 (t, 2H, J=8.23 Hz, H^{7,7}), 7.80 (t, 2H, J=8.51 Hz, H^{6,6}), 7.77 (t, 2H, J=6.72 Hz, H^{2,2}), 7.50 (d, 2H, J=6.73 Hz, H^{3,3}), 7.15 (d, 2H, J=7.82 Hz, H^{1,1}), 3.70 [t, 2H, –OCH₂], 1.20 [m, 8H, –(CH₂)₄], 0.87 [t, 3H, –CH₃] ppm. UV-Vis (CH₂Cl₂): λ_{max} (ϵ) = 453 (464), 363 (784), 346 (654), and 276 nm (9085 mol⁻¹ dm³ cm⁻¹). Anal. Calcd for C₃₈H₃₃N₂O₄Ga (%): C, 70.07; H, 5.11; N, 4.30. Found (%): C, 69.70; H, 5.37; N, 4.05.

2.6.3. (Acr)₂GaOCOC₆H₅ (2h). Orange-red solid. Yield: 41 mg (73%): m.p. >300°C. IR (KBr): ν 3050 (m), 1626 (m, C=O), 1522 (m), 1407 (m), 1283 (m), 1147 (m), 1079 (m), 739 (s), and 620 (s) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{max} = 446$, 360, 343, and 272 nm. Anal. Calcd for C₃₃H₂₁N₂O₄Ga (%): C, 68.42; H, 3.65; N, 4.84. Found (%): C, 68.30; H, 3.60; N, 4.72. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.6.4. $(Acr)_2GaOCOC_6H_4OC_6H_{13}$ (2i). Red solid. Yield: 44 mg (67%): m.p. >300°C. IR (KBr): ν 3053 (m), 2928 (m), 2868 (w), 1625 (m, C=O), 1536 (m), 1282 (m), 1148 (m), 1082 (m), 757 (s), and 732 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 9.10 (d, 2H, J = 8.64 Hz, H^{8.8}), 9.00 (s, 2H, H^{4,4}), 8.10 (d, 2H, J = 8.23 Hz, H^{5.5}), 7.90 (t, 2H, J = 7.68 Hz, H^{7.7}), 7.77 (d, 2H, J = 8.65 Hz, H^{a,e}), 7.52 (t, 2H, J = 8.09 Hz, H^{6.6}), 7.50 (t, 2H, J = 7.82 Hz, H^{2.2}), 7.40 (d, 2H, J = 8.37 Hz, H^{3.3}), 7.20 (d, 2H, J = 6.45 Hz, H^{b,d}), 7.63 (d, 2H, J = 8.64 Hz, H^{1.1}), 3.80 [t, 2H, J = 7.28 Hz, $-OCH_2$], 1.50 [m, 8H, $-(CH_2)_4$], 0.85 [t, 3H, J = 6.59 Hz, $-CH_3$] ppm. UV-Vis (CH₂Cl₂): λ_{max} = 453, 364, 343, and 276 nm. Anal. Calcd for C₃₉H₃₃N₂O₅Ga (%): C, 68.94; H, 4.90; N, 4.12. Found (%): C, 69.29; H, 4.76; N, 4.12.

2.7. Preparation of (Acr)₂InZ (3f-3i)

Complexes **3f**-**3i** were prepared as described for **2f**.

2.7.1. (Acr)₂InOC₆H₅ (3f). Orange solid. Yield: 40 mg (73%): m.p. >300°C. IR (KBr): ν 3059 (m), 1624 (m), 1518 (m), 1461 (m), 1282 (m), 1146 (m), 1080 (m), 749 (s), and 658 (s) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{max} = 460$, 364, 347, and 279 nm. Anal. Calcd for

 $C_{32}H_{21}N_2O_3In$ (%): C, 64.45; H, 3.55; N, 4.70. Found (%): C, 64.33; H, 3.42; N, 4.56. The poor solubility of this complex did not allow collection of ¹H NMR spectra.

2.7.2. (Acr)₂InOC₆H₄OC₆H₁₃ (3g). Red solid. Yield: 40 mg (62%): m.p. >300°C. IR (KBr): ν 3055 (m), 2965 (m), 2889 (w), 1566 (m), 1514 (m), 1359 (m), 1147 (m), 1080 (m), and 744 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 9.09 (d, 2H, J = 8.95 Hz, H^{8.8}), 9.04 (s, 2H, H^{4,4}), 8.21 (t, 2H, J = 7.55 Hz, H^{5.5}), 8.16 (d, 2H, J = 8.39 Hz, H^{a.e}), 8.03 (t, 2H, J = 7.58 Hz, H^{7.7}), 7.75 (t, 2H, J = 8.33 Hz, H^{6.6}), 7.63 (d, 2H, J = 8.36 Hz, H^{2.2}), 7.40 (d, 2H, J = 8.20 Hz, H^{3.3}), 7.35 (d, 2H, J = 7.29 Hz, H^{1.1}), 7.23 (d, 2H, J = 7.21 Hz, H^{b.d}), 3.56 [t, 2H, -OCH₂], 1.55 [m, 8H, -(CH₂)₄], 0.91 [t, 3H, -CH₃] ppm. UV-Vis (CH₂Cl₂): λ_{max} = 475, 366, 350, and 282 nm. Anal. Calcd for C₃₈H₃₃N₂O₄In (%): C, 65.53; H, 4.78; N, 4.02. Found (%): C, 65.50; H, 4.60; N, 4.0.

2.7.3. (Acr)₂InOCOC₆H₅ (3h). Orange-red solid. Yield: 40 mg (69%): m.p. >300°C. IR (KBr): ν 3061 (m), 1625 (m, C=O), 1520 (m), 1397 (m), 1147 (m), 1080 (m), and 748 (s) cm⁻¹. UV-Vis (CH₂Cl₂): $\lambda_{max} = 462$, 363, 345, and 278 nm. Anal. Calcd for C₃₃H₂₁N₂O₄In (%): C, 63.48; H, 3.39; N, 4.49. Found (%): C, 63.32; H, 3.21; N, 4.32. The poor solubility of this complex did not allow for ¹H NMR spectra.

2.7.4. (Acr)₂InOCOC₆H₄OC₆H₁₃ (3i). Bright red solid. Yield: 44 mg (65%): m.p. >300°C. IR (KBr): ν 3053 (m), 2955 (m), 2870 (m), 1623 (m, C=O), 1528 (m), 1282 (m), 1145 (m), 1080 (m), 763 (s), and 750 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 9.10 (d, 2H, J=9.06 Hz, H^{8,8}), 8.95 (s, 2H, H^{4,4}), 8.05 (d, 2H, J=8.51 Hz, H^{5,5}), 7.90 (t, 2H, J=7.55 Hz, H^{7,7}), 7.90 (d, 2H, J=8.65 Hz, H^{a,e}), 7.55 (t, 2H, J=7.82 Hz, H^{6,6}), 7.50 (t, 2H, J=7.55 Hz, H^{2,2}), 7.30 (d, 2H, J=8.37 Hz, H^{3,3}), 7.25 (d, 2H, J=7.21 Hz, H^{1,1}), 6.75 (d, 2H, J=8.64 Hz, H^{b,d}), 3.90 [t, 2H, J=6.58 Hz, -OCH₂], 1.65 [m, 8H –(CH₂)₄], 0.85 [t, 3H, J=6.87 Hz, -CH₃] ppm. UV-Vis (CH₂Cl₂): λ_{max} =473, 366, 349, and 282 nm. Anal. Calcd for C₃₉H₃₃N₂O₅In (%): C, 64.65; H, 4.59; N, 3.87. Found (%): C, 64.76; H, 4.33; N, 3.60.

2.8. Preparation of (Acr)₂In(acac) (31)

An ethanolic solution (10 mL) of potassium acetylacetonate (26 mg, 0.186 mmol) was added to an ethanolic suspension (5 mL) containing **3a** (50 mg, 0.093 mmol). The resulting mixture was stirred for 24 h at reflux. After stirring the reaction mixture for 1 day, the precipitate was collected by filtration and repeatedly washed with water and ethanol. Recrystallization from chloroform : diethyl ether gave bright red **3l**. Yield: 35 mg (63%): m.p.>300°C. IR (KBr): ν 3060 (m), 1624 (m), 1536 (m), 1479 (m), 1458 (m), 1424 (m), 1147 (m), 1081 (m), 745 (s), and 731 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 9.37 (d, 2H, J = 8.98 Hz, H^{8.8}/), 8.79 (s, 2H, H^{4.4}/), 7.87 (d, 2H, J = 8.54 Hz, H^{5.5/}), 7.48 (t, 2H, J = 7.69 Hz, H^{7.7/}), 7.42 (t, 2H, J = 7.26 Hz, H^{6.6/}), 7.35 (t, 2H, J = 7.96 Hz, H^{2.2/}), 7.25 (d, 2H, J = 7.37 Hz, H^{3.3/}), 7.17 (d, 2H, J = 7.65 Hz, H^{1.1/}), 5.47 (s, 1H, -CH), 1.97 (s, 6H, -CH₃). UV-Vis (CH₂Cl₂): λ_{max} (ϵ) = 473 (361), 365 (241), 349 (301), and 282 nm (6566 mol⁻¹ dm³ cm⁻¹). Anal. Calcd for C₃₁H₂₃N₂O₄In (%): C, 61.81; H, 3.85; N, 4.65. Found (%): C, 62.07; H, 3.74; N, 4.45.

2.9. Preparation of $[(Acr)_2In][CF_3SO_3]$ (3m)

A solution of acetonitrile (5 mL) containing (trifluoromethylsulfonyloxy) silver (72 mg, 0.279 mmol) was added to **3a** (50 mg, 0.093 mmol) suspended in acetonitrile (5 mL). The resulting mixture was continuously stirred for 5 days at room temperature and then filtered on a Celite column. The filtrate was concentrated *in vacuo* and precipitated with diethyl ether, washed with diethyl ether and dried in vacuum. A green solid was obtained. Yield: 36 mg (60%): m.p. 201°C. IR (KBr): ν 3058 (m), 1622 (m), 1530 (m), 1278 (br, SO₃), 1174 (br, CF₃), 1077 (m), 733 (s), and 641 (s) cm⁻¹. ¹H NMR (CD₃CN): δ 8.98 (s, 2H, H^{4,4}), 8.21 (d, 2H, J=8.07 Hz, H^{8,8}), 8.15 (d, 2H, J=8.51 Hz, H^{5,5}), 7.87 (t, 2H, J=6.60 Hz, H^{7,7}), 7.65 (t, 2H, J=6.60 Hz, H^{6,6}), 7.62 (d, 2H, J=7.48 Hz, H^{3,3}), 7.50 (t, 2H, J=7.34 Hz, H^{2,2}), 7.17 (d, 2H, J=7.34 Hz, H^{1,1}) ppm. UV-Vis (CH₃CN): λ_{max} =400, 357, 340, and 256 nm. Anal. Calcd for C₂₇H₁₆N₂O₅SF₃In (%): C, 49.71; H, 2.47; N, 4.29. Found (%): C, 49.44; H, 2.72; N, 4.0.

2.10. Preparation of $[(Acr)_2In(N,N)][CF_3SO_3]$ (3n, 3o)

2.10.1. [(Acr)₂In(bipy)][CF₃SO₃] (3n). Complex 3m (50 mg, 0.077 mmol) was dissolved in ethanol (5 mL) and a solution of 2,2'-bipyridine (60 mg, 0.383 mmol) in ethanol (5 mL) was added. The suspension was continuously stirred for 5 h at room temperature. The product was filtered and washed with ethanol and diethyl ether and dried in vacuum. A brown solid was obtained. Yield: 37 mg (59%): m.p. >300°C. IR (KBr): ν 3052 (m), 1525 (m), 1282 (br, SO₃), 1163 (br s, CF₃), 1082 (m), 783 (s), and 641 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 9.40 (d, 2H, J=9.15 Hz, H^{a,h}), 9.04 (d, 2H, J=8.14 Hz, H^{8,8}/), 8.96 (s, 2H, H^{4,4}/), 8.38 (t, 2H, J=7.92 Hz, H^{b,g}), 8.01 (d, 2H, J=8.59 Hz, H^{5,5}/), 7.84 (d, 2H, J=7.92 Hz, H^{d,e}), 7.79 (t, 2H, J=7.41 Hz, H^{7,7}/), 7.56 [m, 6H, H^{c,f,2,2}/_{6,6}/], 7.35 (d, 2H, J=8.36 Hz, H^{3,3}/), 7.20 (d, 2H, J=7.48 Hz, H^{1,1}/) ppm. UV-Vis (CH₂Cl₂): $\lambda_{max} (\varepsilon)$ =473 (524), 366 (1028), 349 (1129), and 279 (20080 mol⁻¹ dm³ cm⁻¹) nm. Anal. Calcd for C₃₇H₂₄N₄O₅SF₃In (%): C, 54.97; H, 2.99; N, 6.93. Found (%): C, 54.78; H, 3.10; N, 6.72.

2.10.2. [(Acr)₂In(phen)][CF₃SO₃] (30). Complex 30 was prepared analogously as for 3m using 1,10-phenanthroline. A brown solid was obtained. Yield: 38 mg (60%): m.p. >300°C. IR (KBr): ν 3055 (m), 1527 (m), 1281 (br, SO₃), 1172 (br, CF₃), 1076 (m), and 760 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 9.62 (s, 2H, H^{d,e}), 9.44 (s, 2H, H^{4,4}'), 8.59 (d, 2H, H^{a,h}), 8.42 (d, 2H, H^{8.8}'), 8.31 (d, 2H, H^{c,f}), 8.19 (t, 2H, H^{7.7}'), 8.03 (dd, 2H, H^{b,g}), 7.79 (d, 2H, H^{5.5'}), 7.68 (t, 2H, H^{6.6'}), 7.57 (t, 2H, H^{2.2'}), 7.35 (d, 2H, H^{3.3'}), 7.24 (d, 2H, H^{1.1'}) ppm. UV-Vis (CH₂Cl₂): λ_{max} =476, 366, 348, and 282 nm. Anal. Calcd for C₃₉H₂₄N₄O₅InSF₃ (%): C, 56.27; H, 2.91; N, 6.73. Found (%): C, 56.20; H, 2.60; N, 6.55.

3. Results and discussion

3.1. Aluminum complexes

The HAcr ligand, treated with an equimolar amount of sodium hydroxide, reacted with Al(III) chloride giving a bright orange solid (80% yield) whose elemental analysis

Scheme 1. Proposed molecular structure and proton numbering scheme of the Al(III) complexes 1 and 1a-1e. Reagents and conditions: LiCl or NaBr or KI or LiNSC or NaN₃, water: methanol, rt.

accounts for the hydroxo species $(Acr)_2AIOH$ (1). The molecular structure of 1 (scheme 1) was proposed from spectroscopic data with the IR spectrum showing, in the 1075–1143 cm⁻¹ range, bands diagnostic of coordinated Acr and, at 2824 cm⁻¹, a strong band attributable to OH stretch. Likewise, ¹H NMR spectrum revealed the magnetic equivalence of two Acr moieties, the signals of which, with reference to HAcr, were shifted downfield upon coordination to Al(III).

Complex 1 undergoes metathetical reactions with substitution of OH for a monodentate ligand Y ((Acr)₂AlY; Y = Cl, Br, I, NCS, N₃, 1a–1e, respectively, in scheme 1). Products 1a–1e were characterized by elemental analysis. In addition, IR spectroscopy showed that the OH group disappeared in 1a–1e and, for 1d and 1e, the appearance of a band attributable to NCS (2068 cm⁻¹, consistent with N-bonded isothiocyanato ligand) [10], or to the N₃ (2053 cm⁻¹) group [11], respectively. Complexes 1a–1e are poorly soluble in standard solvents so that their ¹H NMR spectra are not available.

3.2. Gallium complexes

The Ga(III) source, Ga(NO₃)₃ · xH₂O reacted with HAcr in the presence of the required amount of NaOH to form (Acr)₂GaNO₃, **2** (scheme 2). This compound is a practically insoluble bright orange solid in 85% yield which gave satisfactory elemental analysis. The IR spectrum showed bands characteristic of both the coordinated Acr fragment (in the 1142–1085 cm⁻¹ range) and NO₃ (at 1277 cm⁻¹). Complex **2** is a useful starting material for the synthesis of (Acr)₂GaY (Y = Cl, Br, I, NCS, N₃, **2a**–**2e**, respectively, in scheme 2) which can be accomplished by treating **2** with an excess of MY (LiCl, NaBr, KI, LiNCS, and NaN₃). The actual stoichiometries of **2a–2e** were proved with elemental analysis and IR spectra confirmed the substitution of NO₃ for Y.

Another series of complexes containing the "(Acr)₂Ga" fragment, (Acr)₂GaZ (**2f**-**2i**), was obtained (scheme 2) by reaction, in an alkaline medium, of **2** with some phenols (HZ = C₆H₅OH, **2f**, and C₆H₁₃OC₆H₄OH, **2g**) or carboxylic acids (HZ = C₆H₅COOH, **2h**, and C₆H₁₃OC₆H₄COOH, **2i**). These compounds, separated as orange (**2f** and **2g**) or red (**2h** and **2i**) solids (59%–73% yield) analyzing for (Acr)₂GaZ with ¹H NMR spectra (available for **2g** and **2i** only) and IR spectra which displayed the expected features: e.g.

Scheme 2. Proposed molecular structure and proton numbering scheme of the Ga(III) complexes **2** and **2a–2i**. Reagents and conditions: (a) LiCl or NaBr or KI or LiNSC or NaN₃, water: ethanol or water: acetone, rt; (b) C_6H_5OH or $C_6H_{13}OC_6H_4OH$, water: ethanol, ΔT ; (c) C_6H_5COOH or $C_6H_{13}OC_6H_4COOH$, water: ethanol, ΔT .

protonic resonances (which account for magnetically equivalent Acr fragments as illustrated by characteristic chemical shifts and relative intensities), IR aromatic absorptions between 1080 and 1140 cm^{-1} (**2f**-**2i**) and aliphatic CH stretches at 3050 cm^{-1} (**2g** and **2i**). The IR spectra also support the presence of monodentate carboxylate showing a band at 1626 and 1625 cm⁻¹ for **2h** and **2i**, respectively [5c, 7a].

3.3. Indium complexes

The HAcr ligand reacting in alkaline medium with $InCl_3$ gave a high yield (90%) of the pentacoordinated compound (Acr)₂InCl (**3a**; scheme 3). This complex is an orange

Scheme 3. Proposed molecular structure and proton numbering scheme of the In(III) complexes **3a–3i**. Reagents and conditions: (a) LiCl or NaBr or KI or LiNSC or NaN₃, water: ethanol or water: acetone, rt; (b) C₆H₅OH or C₆H₁₃OC₆H₄OH, water: ethanol, Δ T; (c) C₆H₅COOH or C₆H₁₃OC₆H₄COOH, water: ethanol, Δ T.

solid of very low solubility in standard solvents, but characterized by stoichiometry and an IR spectral pattern in the $1146-1080 \text{ cm}^{-1}$ range that reflects coordination of Acr.

The chloride present in **3a** can be easily replaced by a similar halide or pseudo-halide ligand (i.e. Br, I, NCS, or N₃, **3b–3e**, respectively, in scheme 3) through metathetical reactions. Moreover, like **2**, **3** reacts with phenols (HZ = C₆H₅OH or C₆H₁₃OC₆H₄OH) or carboxylic acids (HZ = C₆H₅COOH or C₆H₁₃OC₆H₄COOH) giving the respective orange compounds of (Acr)₂InZ, **3f–3i**. Elemental analyses of these compounds confirmed the calculated values and the IR and ¹H NMR (available for only **3g** and **3i**) spectra exhibit characteristics which parallel those for the homologous (Acr)₂GaZ complexes (*vide supra*). The observed C=O stretching frequency (1625 cm⁻¹ in **3h** and 1623 cm⁻¹ in **3i**) indicated monodentate coordination of carboxylate.

Scheme 4. Proposed molecular structure and proton numbering scheme of the synthesized In(III) complexes **3I–30**. Reagents and conditions: (a) Kacac, ethanol, ΔT ; (b) Ag[CF₃SO₃], acetonitrile, rt; (c) 2,2'-bipyridine or 1,10-phenanthroline, ethanol, rt.

A neutral hexacoordinate complex containing the "(Acr)₂In" fragment was obtained by treating **3a** with potassium acetylacetonato (**3l** in scheme 4). However, ionic hexacoordinate complexes required a two-step reaction, first by reacting **3a** with one equivalent of silver triflate (scheme 4) to form the solvato species [(Acr)₂In(NCCH₃)] [CF₃SO₃], **3m**, followed by addition of stoichiometric amounts of the neutral N,N chelating ligand (2,2'-bipyridine or 1,10-phenanthroline, respectively, bipy and phen, **3n** and **3o** in scheme 4). In addition to elemental analyses to characterize **3l**–**3o**, IR and ¹H NMR spectroscopic studies were also undertaken. For **3l**, IR spectrum showed strong band characteristics of the coordinated Acr fragment (1081–1147 cm⁻¹) and ¹H NMR spectrum revealed that the two Acr fragments are magnetically equivalent with a single set of signals for Acr. Moreover, confirmed by ¹H NMR, for **3l** partial dissociation of the acetylacetonato ligand was observed in solution.

For synthesis of **3m** it was necessary to replace the chloride with comparatively more labile CH₃CN, facilitating subsequent addition of N,N ligands. IR spectrum showed not only bands of triflate at 1278 and 1174 cm^{-1} [12] which confirm the ionic nature of **3m**, but also typical bands of coordinated Acr. Only one set of signals related to the magnetically equivalent Acr moieties was observed in the ¹H NMR spectrum.

The new complexes $[(Acr)_2In(bipy)][CF_3SO_3]$, **3n** and $[(Acr)_2In(phen)][CF_3SO_3]$, **3o**, are ionic hexacoordinated species whose IR spectra show bands for both the CF_3SO_3 group (1282 and 1163 cm⁻¹ for **3n**; 1281 and 1172 cm⁻¹ for **3o**) and those of Acr. ¹H NMR spectra showed that the two Acr fragments are magnetically equivalent and account for eight signals, while the other four signals correspond to the N,N ligand. For both **3n** and **3o** an octahedral coordination geometry, like that obtained by single crystal X-ray analysis for the homologous $[(MeQ')_2Ga(N,N)][PF_6]$ complexes (N,N=2,2'-bipyridine or 1,10-phenanthroline) [9], can be proposed. Finally, free bipy and phen were present in solution, indicating the labile nature of these ligands to the "(Acr)₂In" fragment (¹H NMR evidence).

4. Conclusions

A new set of compounds was designed and synthesized to evaluate the complementary role that the steric hindrance of the HAcr and the ionic radius of Al(III)–In(III) triad have on the synthesis of 4-hydroxyacridinato complexes. The obtained results demonstrate that, despite the widespread tendency of these metals to prefer an octahedral coordination geometry, irrespective of the HAcr to M(III) molar ratio, HAcr gives rise to only $(Acr)_2MX$ species (1, 2, and 3a). Therefore, contrarily to HQ or HMeQ', no $(Acr)_3M$ compounds are formed.

The starting materials 1–3 were successively reacted with homologous series of ligands which differed in steric demand and coordination capability. With halide or pseudo-halide Y ligands (Y=Cl, Br, I, NCS, N₃), pentacoordinated (Acr)₂MY complexes were obtained. Complex 1 did not react with the more sterically demanding phenols HZ (HZ=C₆H₅OH and C₆H₁₃OC₆H₄OH), and the corresponding (Acr)₂MZ derivatives could be obtained for only M=Ga and In. Similarly, with the carboxylato HZ ligands (HZ=C₆H₅COOH and C₆H₁₃OC₆H₄COOH), only pentacoordinated (Acr)₂MZ compounds (M=Ga, In) with monodentate carboxylato coordination were isolated. Finally, hexacoordinated neutral ((Acr)₂In(acac)) or ionic

 $([(Acr)_2In(bipy)][CF_3SO_3]$ and $[(Acr)_2In(phen)][CF_3SO_3])$ complexes were obtained only with the larger In(III).

The reported investigation proves that interplay between the steric demand of the HAcr and the ionic radius along the Al(III), Ga(III), and In(III) triad allows synthesis of mixed ligand complexes containing two chelated 4-hydroxyacridinate ligands and a further ligand which could be used for addition of selected functionalities.

Acknowledgments

Financial support received from the Ministero dell'Istruzione, dell'Università e della Ricerca (MiUR) through the Centre of Excellence CEMIF.CAL (CLAB01TYEF) is gratefully acknowledged.

References

- (a) W.E. Ohnesorge, L.B. Rogers. Spectrochim. Acta, 14, 27 (1959); (b) H. Schmidbaur, J. Lettenbauer, D.L. Wilkinson, G. Müller, O. Kumberger. Z. Naturforsch., 46b, 901 (1991); (c) L.S. Sapochak, A. Ranasinghe, H. Kohlmann, K.F. Ferris, P.E. Burrows. Chem. Mater., 16, 401 (2004).
- [2] (a) C.W. Tang, S.A. VanSlyke. Appl. Phys. Lett., 12, 913 (1987); (b) C.W. Tang, S.A. VanSlyke, C.H. Chen. J. Appl. Phys., 65, 3610 (1989); (c) P.E. Burrows, L.S. Sapochak, D.M. McCarty, S.R. Forrest, M.E. Thompson. Appl. Phys. Lett., 64, 2718 (1994); (d) C.H. Chen, J. Shi. Coord. Chem. Rev., 171, 161 (1998); (e) L.S. Hung, C.H. Chen. Mater. Sci. Eng. R, 39, 143 (2002).
- [3] (a) U. Mitschke, P. Bäuerle. J. Mater. Chem., 10, 1471 (2000); (b) L.S. Sapochack, A. Padmaperuma, N. Washton, F. Endrino, G.T. Schmett, J. Marshall, D. Fogarty, P.E. Burrows, S.R. Forrest. J. Am. Chem. Soc., 123, 6300 (2001); (c) B.J. Chen, X.W. Sun, Y.K. Li. Appl. Phys. Lett., 18, 3017 (2003); (d) B.C. Lin, C.P. Cheng, Z. You, C. Hsu. J. Am. Chem. Soc., 127, 66 (2005).
- [4] A. Yuchi, H. Hiramatsu, M. Ohara, N. Ohata. Anal. Sci., 19, 1177 (2003).
- [5] (a) O. Popovych, L.B. Roger. Spectrochim. Acta, 16, 49 (1960); (b) O. Popovych, L.B. Roger. Spectrochim. Acta, 21, 1229 (1965); (c) L.S. Sapochak, P.E. Burrows, D. Garbuzov, D.M. Ho, S.R. Forrest, M.E. Thompson. J. Phys. Chem., 100, 17766 (1996).
- [6] (a) P.R. Scherer, Q. Fernando. Anal. Chem., 13, 1938 (1968); (b) S.A. VanSlyke, P.S. Bryan, F.V. Lovecchio. US Patent No. 5, 150, 006 (1992); (c) P.S. Bryan, F.V. Lovecchio, S.A. VanSlyke. US Patent No. 5, 141, 671 (1992); (d) P. Moore, S.A. VanSlyke, H.J. Gysling. US Patent No. 5, 484, 922 (1996); (e) Y. Qiu, Y. Shao, D. Zhang, X. Hong. Jpn. J. Appl. Phys., 39, 1151 (2000); (f) L.M. Leung, W.Y. Lo, S.K. So, K.M. Lee, W.K. Choi. J. Am. Chem. Soc., 122, 5640 (2000); (g) I.S. Toulokhonova, I.A. Guzei, M. Kavana, R. West. Main Group, Met. Chem., 25, 489 (2002); (h) M. La Deda, I. Aiello, A. Grisolia, M. Ghedini, M. Amati, F. Lelj. Dalton Trans., 330 (2006).
- [7] (a) H. Schmidbaur, J. Lettenbauer, O. Kumberger, J. Lachmann, G. Müller. Z. Naturforsch, 46b, 1065 (1991); (b) A. Elschener, H.W. Heuer, F. Jonas, S. Kirchmeyer, R. Wehrmann, K. Wussow. Adv. Mater., 13, 1811 (2001); (c) S. Tan, B. Zhao, Y. Zou, Z. Xiao, X. Wang, G. Yu, Y. Liu, D. Zhu. J. Mater. Sci., 39, 1405 (2004); (d) A. Crispini, I. Aiello, M. La Deda, I. De Franco, M. Amati, F. Lelj, M. Ghedini. Dalton Trans., 5124 (2006).
- [8] D.R. Lide, H.R. Frederikse. CRC Handbook of Chemistry and Physics, 76th Edn, CRC Press, Boca Raton (1995).
- [9] A. Crispini, M. Ghedini, I. De Franco, I. Aiello, M. La Deda, N. Godbert, A. Bellusci. *Dalton Trans.*, 1186 (2008).
- [10] (a) K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley and Sons, New York (1986); (b) K. Vrieze, G. van Koten. In Comprehensive Coordination Chemistry, G. Wilkinson, R.D. Gillard, J.A. McCleverty (Eds), Pergamon, Oxford (1987).
- [11] H. Sussek, F. Stowasser, H. Pritzkow, R.A. Fischer. Eur. J. Inorg. Chem., 455 (2000).
- [12] G.A. Lawrance. Chem. Rev., 86, 17 (1986).